- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Woodson, Jesse D. (2)
-
Alamdari, Kamran (1)
-
Bacheva, Vesna (1)
-
Baker, Justin (1)
-
Baldwin, Mathew (1)
-
Beilstein, Mark (1)
-
Call, Douglas_F (1)
-
Deaver, Jessica_A (1)
-
Efimenko, Kirill (1)
-
Fisher, Karen E. (1)
-
Frank, Margaret (1)
-
Fu, Zheng Qing (1)
-
Genzer, Jan (1)
-
Goloubinoff, Pierre (1)
-
Grieger, Khara (1)
-
Gu, April_Z (1)
-
Ilman, Mehmet_Mert (1)
-
Jones, Jacob_L (1)
-
Li, Sijin (1)
-
Liu, Jen (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bacheva, Vesna; Madison, Imani; Baldwin, Mathew; Baker, Justin; Beilstein, Mark; Call, Douglas_F; Deaver, Jessica_A; Efimenko, Kirill; Genzer, Jan; Grieger, Khara; et al (, Global Change Biology)ABSTRACT Feeding the growing human population sustainably amidst climate change is one of the most important challenges in the 21st century. Current practices often lead to the overuse of agronomic inputs, such as synthetic fertilizers and water, resulting in environmental contamination and diminishing returns on crop productivity. The complexity of agricultural systems, involving plant‐environment interactions and human management, presents significant scientific and technical challenges for developing sustainable practices. Addressing these challenges necessitates transdisciplinary research, involving intense collaboration among fields such as plant science, engineering, computer science, and social sciences. Five case studies are presented here demonstrating successful transdisciplinary approaches toward more sustainable water and fertilizer use. These case studies span multiple scales. By leveraging whole‐plant signaling, reporter plants can transform our understanding of plant communication and enable efficient application of water and fertilizers. The use of new fertilizer technologies could increase the availability of phosphorus in the soil. To accelerate advancements in breeding new cultivars, robotic technologies for high‐throughput plant screening in different environments at a population scale are discussed. At the ecosystem scale, phosphorus recovery from aquatic systems and methods to minimize phosphorus leaching are described. Finally, as agricultural outputs affect all people, integration of stakeholder perspectives and needs into research is outlined. These case studies highlight how transdisciplinary research and cross‐training among biologists, engineers, and social scientists bring diverse expertise to tackling grand challenges in sustainable agriculture, driving discovery and innovation.more » « less
-
Alamdari, Kamran; Fisher, Karen E.; Tano, David W.; Rai, Snigdha; Palos, Kyle; Nelson, Andrew D. L.; Woodson, Jesse D. (, New Phytologist)Summary Reactive oxygen species (ROS) produced in chloroplasts cause oxidative damage, but also signal to initiate chloroplast quality control pathways, cell death, and gene expression. TheArabidopsis thaliana plastid ferrochelatasetwo(fc2) mutant produces the ROS singlet oxygen in chloroplasts that activates such signaling pathways, but the mechanisms are largely unknown.Here we characterize onefc2suppressor mutation and map it toCYTIDINE TRIPHOSPHATE SYNTHASE TWO(CTPS2), which encodes one of five enzymes in Arabidopsis necessary forde novocytoplasmic CTP (and dCTP) synthesis.Thectps2mutation reduces chloroplast transcripts and DNA content without similarly affecting mitochondria. Chloroplast nucleic acid content and singlet oxygen signaling are restored by exogenous feeding of the dCTP precursor deoxycytidine, suggestingctps2blocks signaling by limiting nucleotides for chloroplast genome maintenance. An investigation of CTPS orthologs in Brassicaceae showed CTPS2 is a member of an ancient lineage distinct from CTPS3. Complementation studies confirmed this analysis; CTPS3 was unable to compensate for CTPS2 function in providing nucleotides for chloroplast DNA and signaling.Our studies link cytoplasmic nucleotide metabolism with chloroplast quality control pathways. Such a connection is achieved by a conserved clade of CTPS enzymes that provide nucleotides for chloroplast function, thereby allowing stress signaling to occur.more » « less
An official website of the United States government
